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Abstract

I have experimentally studied the influence of the buoyancy force and inlet flow conditions on the laminar—turbulent
transition process of fully developed air flow in a heated horizontal tube with uniform wall heat flux at modified
Rayleigh number 3.1 x 10°. Eight time-series of the air temperature were simultaneously obtained using eight ther-
mocouples positioned within the tube along a vertical line passing through the tube’s axis. I have studied the time and
space dependence of the transition behavior by analyzing these instantaneous time-series. By calculating a set of
Lyapunov exponents and the correlation dimension of the time-series of a single thermocouple, these transitional flows
are found to be chaotic. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The laminar—turbulent transition of fluid flow in
tubes is encountered in a wide variety of engineering
situations, including duct flow and heat exchangers in
chemical processes. It is important to elucidate the
mechanisms and characteristics of such transitions, be-
cause the macroscopic heat and mass transfer per-
formance of fluid flow systems of this type is
significantly influenced by these mechanisms and char-
acteristics in the transitional regime. From previous in-
vestigations, it is known that there are typically two
types of transition processes in this context. One is the
so-called “cascade-type transition” in an enclosure, such
as in the case of Taylor—Couette flow [1] and Rayleigh—
Bénard flow [2], and the other is the so-called “breakout-
type transition”, such as that in unheated tube flow [3,4].
The transition process of the cascade type has come to
be understood through many experimental and numer-
ical studies. This transition process always produces a
limit cycle through the first Hopf bifurcation, and then,
as the control parameter is increased further, this limit
cycle becomes a torus or comes to exhibit period-dou-
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bling motion. Further increasing the control parameter
results in a series of successive bifurcations and even-
tually to chaos. In contrast to the situation for the
transition process of the cascade type, there is almost
nothing known, even experimentally, about the transi-
tion process of the breakout type.

With the above-described situation regarding the
study of the laminar—turbulent transition, some exper-
imental investigations have been made on this transition
in unheated tube flow, which is a typical type of
breakout transition. For example, Wygnanski and co-
workers [3.4] experimentally found that “puff flow” is
produced when the entrance flow is strongly disturbed
and the tube is sufficiently long, and “slug flow” is
produced when the entrance flow is undisturbed. They
determined the regions in which puff flow and slug flow
occur in transitional flow as a whole in terms of the
disturbance level at the tube entrance, and described the
important characteristics of puffs and slugs in full detail.
A flow visualization experiment of equilibrium puff flow
was reported by Bandyopadhyay [5]. He observed vari-
ous organized types of motion: high-speed laminar plug
flow around the tube axis flowing into the turbulent
region near the upstream interface, shedding of a train
of wake-like vortices and helical motion near the up-
stream interface, and longitudinal vortices in the
downstream region. Recently, Matsuuchi and Adachi [6]
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Nomenclature

D tube inner diameter

D, correlation dimension

din embedding dimension

Gr,  modified Grashof number, gfg,D*/(xv?)

Pr Prandtl number, v/a

qw heat flux at the tube wall

r distance from the tube axis measured along a

line perpendicular to the axis (» = 0 corre-
sponds to the tube’s axis, and the downward
direction is positive: Fig. 1)

R tube inner radius, D/2

Ra,  modified Rayleigh number, Gr, - Pr

Re Reynolds number, U,D/v

Rey.ns transition Reynolds number at which fluctu-
ations first appear

t time

T temperature

Tr1 fluctuation intensity of fluid temperature,
(VIP/Te) x 100

U velocity along the axial direction

Urr in fluctuation intensity of velocity at the tube

inlet, ((\/UZ/U) x 100),,

X axial coordinate (Fig. 1)
Physical properties were estimated at the bulk
fluid temperature of the measuring section

Greek symbols

o thermal diffusivity of the fluid

p coeflicient of thermal expansion

At time interval of sampling

2] nondimensional fluid temperature, (T, — 7t)/
(ﬂw - Tlc)

i Lyapunov exponents (i =1,...,dy)

v kinetic viscosity of the fluid

T axial wall temperature gradient

Tdel delay time
Tgey  €volution time

Subscripts

b value at the bulk fluid temperature
c value at the tube axis

f fluid

m mean value throughout the tube

tw value at the top of the tube wall

Overline
° time-averaged value of e

conducted an experimental investigation to clarify the
mechanism of the generation and growth of puff flow in
the entrance region. They found that this mechanism is
necessary to exist both the turbulent lumps transported
with averaged-mean velocity, which have extended
spatial structure, and the large-velocity laminar flow
along the tube axis. Furthermore, they discovered that
the large fluctuation intensities near the entrance grad-
ually become concentrated as the distance from the en-
trance increases and become quite localized within the
tube cross-section beginning at a distance of about 60
times the tube diameter. These turbulent lumps grow
into two kinds of puffs, an equilibrium puff, which has
structure extending from the tube axis to the tube wall,
and a quasi-equilibrium puff, which gradually disap-
pears in the downstream region.

Compared to the extensive research conducted on
systems with unheated flow, there have been very few
studies focusing on heated flow, and as a result there is
an incomplete understanding of many details of the
transition process here. Elucidating the characteristics
and mechanisms of such transitions is important not
only for practical engineering reasons, but also to
answer basic scientific questions regarding heat transfer.
In a heated horizontal tube, a secondary flow is pro-
duced by the buoyancy force in the tube cross-section,
and resultingly the transition involves different processes
than that in unheated flow. Nagendra [7] studied the

time-averaged and statistical nature of heat transfer in
the laminar—turbulent transition in a system of com-
bined forced and free convection exhibited by water
flowing in a horizontal tube. El-Hawary [8] determined a
stability map describing regions of different flows in a
plane of nondimensional coordinates representing
forced and free convection effects in horizontal water
flow. More recently, Abid et al. [9,10] performed mea-
surements providing a detailed description of the wall
temperature change along both the azimuthal and axial
directions using infrared thermography in horizontal
water flow with uniform wall heat flux. They elucidated
the nature of the laminar—turbulent transition process in
terms of its spatio-temporal behavior from the entrance
to the fully developed regime. They also determined the
time evolution of the fractal dimension for various
Reynolds numbers and as a function of the distance
along the axial coordinate. In a typical case, they found
that the fractal dimension begins near the tube inlet with
a value greater than 12 and decreases along the axial
coordinate to about 3 in the fully developed regime for
Re = 2600. However, they did not measure the flow field
directly, and thus their results leave many unanswered
questions. Furthermore, there is the possibility that the
values they obtained as a time-series of the tube wall
temperature may have been significantly reduced owing
to the tube’s large heat capacity. (Their tube was of 0.2
mm thickness and 9.6 mm inner diameter.) Therefore, it
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is likely that the results of Abid et al. [9,10] do not ac-
curately describe the real transition behavior. In par-
ticular, the fractal dimensions of the attractor they
obtained by analyzing the time-series of the tube wall
temperature are suspicious. Obtaining the proper de-
scription of the real transition characteristics provided
the motivation of the present work and the direct mea-
surement of the flow fields. I hope this will produce a
clear picture of the characteristics and mechanisms of
the laminar—turbulent transition of a heated horizontal
tube flow.

The aim of this experimental study is to reveal the
influence of the buoyancy force and inlet flow conditions
on the laminar—turbulent transition behavior in fully
developed air flow in a heated horizontal tube with
uniform wall heat flux. Also, I attempt to gain an un-
derstanding of the transition process in terms of the
chaotic behavior of a nonlinear dynamical system by
analyzing the observed time-series of the sensor output.

2. Experimental apparatus and techniques
2.1. Experimental apparatus

Fig. 1 presents a schematic drawing of the exper-
imental apparatus and the coordinate system. The
working medium was air (Prandtl number Pr = 0.71),
which was compressed by a blower and sent into a long,
straight horizontal tube downstream of a settling
chamber. I positioned a flexible tube between the blower
and the straight tube to prevent transmission of the
blower’s vibration. The straight tube was in total 13 m
(228D, where D is the inner diameter of the tube) long,
and all tubes were made of brass of 1.5 mm thickness
and 57 mm inner diameter. The heated test section was
10 m long (175D). In front of this was situated an un-
heated length of 3 m (53D) serving as a hydrodynamic
approach. The heated section was electrically heated
with a uniform wall heat flux ¢, = 340 W/mz, and the
modified Rayleigh number was Ra, = 3.1 x 10°. The
flow rate of air was measured by a float-area-type flow
meter. The flow Reynolds number was adjusted by
varying the flow rate, and I could set the value of Re
with a precision of about +5 by placing three flow
meters of measuring ranges 0.2-2.0, 3-30 NL/min and
2-20 Nm®/h along a line. In order to investigate the
effect of the inlet flow conditions on the transition pro-
cess, two different velocity fluctuation intensities were
used, Ugrin = 1.2% and Up; i, =~ 40%. These were re-
alized, respectively, with and without a turbulence gen-
erator placed at the tube inlet.

Thermocouples of 0.1 mm in diameter were soldered
to the outer surface of the tube at some fixed intervals in
both the axial and azimuthal directions. These measured
the axial wall temperature gradients of the heated tube

Air flow (Pr=0.71)

Straight tube

Thermal insulation

Mixing chamber
Settling chamber x lg

Uniform wall heat flux

Unheated
section Heated section
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Measuring position
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Fig. 1. A schematic drawing of the experimental apparatus and
coordinate system.

wall. The bulk temperature of the fluid in the outlet
section was measured by attaching a mixing chamber to
the heated tube with a flange. Fig. 2 displays the axial
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Fig. 2. Axial wall temperature gradient of the heated tube.




940 H. Koizumi | International Journal of Heat and Mass Transfer 45 (2002) 937-949

temperature gradients of the heated tube. The solid dots
in the figure represent the measured temperatures at the
top of the tube outer wall. The fitted solid line corre-
sponds to a constant axial wall temperature gradient of
7 = 8.3 K/m beginning at a position about 3.7 m (65D)
downstream from the beginning of the heated section.
This gradient is almost identical to the measured tem-
perature gradient of the bulk fluid temperature, indi-
cated by the dot-and-dashed line. Therefore, I confirmed
that a uniform wall heat flux was obtained and that the
position at which the macroscopic flow and temperature
fields were measured was in the fully developed flow
regime.

2.2. Measurement of temperature and velocity fields

The fluid temperature was measured by a thermo-
couple (abbreviated as ‘TC’). The diameter of its copper
and constantan wires was 25 pm, and the response time
was about 0.05 s. The fluid velocity was measured by a
hot-wire anemometer (abbreviated as ‘HWA’). The di-
ameter of its tungsten wire was 7 um. These probes were
inserted into the tube through a hole in its upper wall,
and they were positioned to intersect the midplane. The
TC was such that its sensing point lay 6 mm upstream of
a supporting thin stainless L pipe of 1 mm outer diam-
eter. The measuring position of the temperature and
velocity fields was in the fully developed flow section,
211D downstream from the tube inlet. I sampled 30,000
data points from the time-series generated by the TC
and HWA using a 12-bit analog-to-digital converter.
The time-averaged values and fluctuation intensities of
the temperature and velocity were obtained by process-
ing these data using a microcomputer. Also, the power
spectrum of the temperature fluctuations was obtained
by analyzing the output of the TC using an FFT ana-
lyzer. I found that the TC had a sufficiently short re-
sponse time to follow the turbulence signatures, from the
power spectra at Re = 2230 shown in Fig. 10(b), by
confirming that almost identical power spectra were
obtained using a HWA. (I did not separate the output of
the HWA into velocity and temperature components.)

In order to clarify the relation between the nature of
the turbulent signature and the instantaneous velocity
and temperature profiles, I attempted to obtain the in-
stantaneous temperature profile by positioning eight
TCs inside the tube along a vertical line intersecting the
tube axis. In this way, eight time-series of the air tem-
perature were simultaneously obtained using a micro-
computer. This multi-TC probe was inserted into the
tube from the oval-shaped hole in its upper wall. This
hole was then blocked using a cover sheet and insulating
material wrapped around the tube. The horizontal po-
sition of this set of TCs was such that their sensing
points lay 6 mm upstream of a set of eight supporting
thin stainless L pipes of 1 mm outer diameter. The radial

positions of the points at which the temperature was
measured were r/R = £0.12,4+0.37,+0.61, £0.86, sym-
metrically positioned about the tube axis. I elucidated
the nature of the transition behavior in space and time
by analyzing these instantaneous time-series.

2.3. Lyapunov exponents and phase space

I obtained the Lyapunov exponents /; from the ob-
served time-series of the TC. These exponents
J: (i =1 — dy) represent the rate at which the magnitude
of the displacement vector between two neighboring
points in phase space grows in time. The exponents can
be calculated by the method proposed by Zeng et al.
[11]. This algorithm uses a shell rather than a ball to
minimize the effects of noise or measurement error in-
herent in many experimental situations. When the vol-
ume of phase space is normalized to unity, the inner
radius of such a shell is given by & i, = 0.02 (This
represents the length scale of the noise.) and the outer
radius is given by & max = 0.05. When one or more
positive exponents are obtained, the flow is considered
to be chaotic, with the magnitude of the exponents in-
dicating the time-scale of predictability.

From the time-series of a TC, an attractor was re-
constructed in a dy,-dimensional phase space. Then I
obtained the 4; from the orbits of points evolving in time
interval of length 74.,. I sampled 131,072 data points
from a time-series of TC using a 16-bit analog-to-digital
converter, and the sampling time At was set to 0.01953 s.
All calculations were carried out on a workstation. A
detailed description of the analyzing method is given in a
previously published paper [12].

2.4. Correlation dimension

The correlation dimension, D, represents the com-
plexity of strange attractors. D, can be calculated with
the method proposed by Grassberger et al. [13] using a
time-series of the fluid temperature {7; = T(iAt)} with
i=1,2,...,M, where M is the number of observations
and At is the time interval of sampling. An attractor can
be reconstructed in d,-dimensional phase space by an
embedding. To determine D,, first a locus point 7; from
an arbitrary point of phase space was chosen as the
center of a small ball &,. The number of locus points 7;
contained in this ball is N. The definition of the corre-
lation integral corresponding to this ball is

N

Cler) = 1 Y H (e~ IT~ T,

ij=1

where H(x) is the Heaviside function. For sufficiently
small ¢,, the function C(¢,) can be fit to a power of &,
(that is, in the limit that N — oo, C(e,) approaches an
analytic function), and D. is defined as this power:
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C(e,) o< rPe.  Therefore, D. can be obtained as
D, = hn})(ln C(er)/ In(e,)).

2.5. Flow visualization

I allowed for the visualization of an instantaneous
velocity profile in the transitional regime along the axial
direction using a smoke-wire method. I attached a
transparent acrylic tube of 500 mm length to the end of
the heated brass tube with a flange to facilitate flow
visualization. The diameter of the nichrome wire used
for this purpose was 0.1 mm, and the wire was posi-
tioned within the tube along a vertical line passing
through the tube’s axis 10 mm downstream from the
entrance of the acrylic tube. A photograph was taken
33 ms after the smoke was produced. A strobe scope was
used for lighting, and at the same time the shutter was
automatically released with a speed of 1/15 s.

3. Results and discussion

3.1. Velocity and temperature fields in the steady laminar
regime

Before analyzing the transition regime, I determined
the steady laminar velocity and temperature fields in the
case of unheated flow to check the accuracy with which
the experimental apparatus was assembled and, in the
case of heated flow, to examine the discrepancy between
the temperature distribution observed experimentally
[14] and that found in numerical simulation [16].

3.1.1. Unheated flow

I obtained the velocity distributions using a HWA
along vertical and horizontal directions within the tube
in the fully developed measuring section for unheated
flow at Re = 1800, and I confirmed that these distribu-
tions are in quantitative agreement with those of
Poiseuille flow within a precision of about 3%.

3.1.2. Heated flow

I obtained the velocity distribution using a Pitot tube
and the temperature distribution using a TC by
measuring these quantities at a number of points along a
vertical line passing through the tube’s axis. During
heating, fluid near the wall is warmer and therefore
lighter than the bulk fluid in the center part of the tube.
The resulting upward flows moving along the inside of
the tube converge at the top of the tube, where they join
and form a downward flow in the central part of the
tube. In this way, a pair of vortices is created. This pair
is symmetric with respect to reflection about the vertical
plane passing through the tube’s axis. Due to this sec-
ondary flow, a point of maximum velocity exists in the
lower region around »/R = 0.7. It is known that velocity

and temperature distributions in the steady laminar
regime are functions of the product of the Reynolds and
Rayleigh numbers for a fixed Prandtl number, as found
in the boundary-layer analysis of Mori et al. [14,15] for
large Rayleigh number.

Fig. 3 displays the measured nondimensional velocity
distribution U/U. and temperature distribution @
along a vertical line passing through the center of the
tube for ReRa, = 0.89 x 10°. (Here Re = 980, and the
axial wall temperature gradient of the tube is 1 = 3 K/m.
In the laminar flow regime I use the Rayleigh number of
Ra. = gPptR*/av, where R is the inside radius of the tube,
to facilitate comparison with the results of other papers
[14,16].) Here, Fig. 3(a) represents the results for U /U,
and Fig. 3(b) those for @;. The circles represent my
experimental results, while the triangles represent those
of Mori et al. [14], and the dotted curves are the nu-
merical results of Ishigaki and Mochizuki [16] for air
flow.

As I see in the figure, there exists a discrepancy in the
distributions of Oy, especially in the upper part of the
tube, between the experimental result of Mori et al. [14]
as indicated by the triangles, and the numerical results of
Ishigaki and Mochizuki [16] as indicated by the dotted
line. The present results, indicated by the circles, are
close to the numerical results, and I confirmed that @y in
the upper part of the tube increases (7; decreases) if the
amount of insulation is insufficient around the point
where the sensor is inserted. I found that the tempera-
ture difference between the top and the bottom of the
tube wall was about 1-2 K in the measuring section.
Since the numerical results were derived from the
equations describing only the flow field, in order to take
into account the mixed convection phenomenon in full
detail, it is necessary to also include a description of the
thermal behavior of the tube in numerical simulation, in
particular for high Rayleigh numbers.

3.2. Transition characteristics for unheated flow

I determined the transition Reynolds number Reyns
at which the appearance of turbulent fluctuations was
detected in the output of the HWA.

Fig. 4 displays the time-series of the fluid velocity for
unheated flow at the tube’s axis (/R = 0.00) for two
different inlet flow conditions. Here, Fig. 4(a) displays
the turbulent signature that appears around
Reans = 4600 for the case of a small inlet fluctuation
intensity, Ugy i, = 1.2%, while Fig. 4(b) is the turbulent
signature that appears around Rey,,s = 2100 for a large
inlet fluctuation intensity, Ug; i, = 40%.

Wygnanski and Champagne [3] referred to the tur-
bulent signatures occurring for the case of small Uy ;, as
“slugs”, and to those for larger values as “puffs”. The
leading front of the turbulent puff does not have a
clearly defined interface, and the trailing front of which
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Fig. 3. Nondimensional velocity and temperature distributions at ReRa, = 0.89 x 10° in the laminar regime. (a) Velocity distributions.

(b) Temperature distributions.
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Fig. 4. Hot-wire traces for two inlet flow conditions at
r/R = 0.00 for unheated flow. (a) Turbulent slug (Re = 4600,
Ury in = 1.2%). (b) Turbulent puff (Re = 2100, Uy i, ~ 40%).

boundary is clearly defined. I confirmed here that the
nature of the turbulence signature depends strongly on
the level of disturbance at the tube inlet, and my results

are in qualitative agreement with those of Wygnanski
et al.

3.3. Transition characteristics for heated flow
The experimental investigation for heated tran-
sitional flow was carried out at modified Rayleigh

number Ra, = 3.1 x 10°.

3.3.1. Dependence of the transition behavior on the inlet

flow conditions

Below Reynolds number 1900, the flow is completely
steady and laminar for the two different inlet flow con-
ditions, Ug; iy = 1.2% and Ug i = 40%. Small tem-
perature fluctuations of frequency slightly less than
about 1 Hz appear at approximately Re = 1900, near the
point at which O is maximal (that is, near r/R =
0.6 to 0.7, which also corresponds to the point of max-
imal velocity). Further increasing the Reynolds number,
turbulent lumps that resemble the “turbulent puffs’ seen
in unheated flow, as shown in Fig. 4(b), appeared in-
termittently. The appearance of these turbulent lumps is
independent of the fluctuation intensity at the tube inlet
Urr in. That is, when Ra, is large, the secondary flow,
caused by buoyancy, leads to the transition at a Rey-
nolds number Rey.,,s, and the value of Rey.,s depends
very little on the fluctuation intensity at the tube inlet.

Fig. 5 displays the hot-wire traces at Re = 2230 and
r/R = 0.70 for the two different inlet flow conditions. (I
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did not separate the output of the HWA into velocity
and temperature components.) Here, Fig. 5(a) is the
result for Ug i, =1.2% and Fig. 5(b) that for
Ugr in ~ 40%. 1 see that the two time-series are almost
identical. The leading front of the turbulent lump here
does not have a clearly defined interface, and the trailing
front of which boundary is clearly defined. These time-
series resemble that of the turbulent puff displayed in
Fig. 4(b), which was produced with large Ug; i, for un-
heated flow. I refer to the large fluctuations in heated
flow shown in Fig. 5 as “turbulent lumps resembling
turbulent puffs”, because their signature resembles that
of puffs in unheated flow. However, I could not elucidate
the details of these fluctuations and determine the dif-
ference between a puff and a lump in this experiment.
However, their resemblance suggests that the mecha-
nisms by which they are produced are very similar. That
is, the upstream laminar fluid continuously enters the
slower-moving turbulent lump, and large fluctuations
are thereby produced at the trailing interface of the
turbulent lump in the heated flow. In the present ex-
periment, in which turbulent lumps were conveyed with
the mean axial velocity U,,, the total axial length of these
lumps shown in the Figs. 5(a) and (b) was approximately
30D. Based on the time-series of the HWA output, no
splitting or merging of turbulent lumps, which exist just
in the upstream or downstream portions, was observed
to take place. This suggests that a turbulent lump is
stable and possesses a self-sustaining mechanism, con-
sists of the balance between the production and dissi-

Heated flow

~ 30D

1
(a) Time — ‘>l_" 2
~ 30D
iy
Lfading front 7 mg front T
(b) Time —

Fig. 5. Hot-wire traces for the two inlet flow conditions at
Re = 2230 and /R = 0.70 for heated flow. (a) Turbulent lump
resembling turbulent puff (Ugy j, = 1.2%). (b) Turbulent lump
resembling turbulent puff (Ug i &~ 40%).

pation of energy, as in the case of a turbulent puff in
unheated flow [3,4,6]. This stable structure flows in the
downstream direction, maintaining in a near-equilib-
rium state.

Mori et al. [14] experimentally found in a similar flow
system that, for large Up i, the transition Reynolds
number Re.,s starts at about 2000 and increases with
Rayleigh number Ra,, while for small Ugj iy, Reyans
reaches a value as high as about 7700 and decreases with
Ra,. Furthermore, when the product of Re and Ra, is
large, the secondary flow created by buoyancy causes
Reyans to tend to a single value, independent of Ugy .
My experimental results confirm that the value
Reqans ~ 1900 and the time-series at Re = 2230 are
independent of Upri, for Rayleigh numbers
Ra, =3.1x 10°, as used in this experiment. Therefore, I
carried out the rest of the experiment using only the
large Uf; i, value.

Bandyopadhyay [5] pointed out that the most im-
portant factor for the generation and growth of puffs in
unheated tube flow is the large velocity difference at the
laminar-to-turbulent trailing interface of the turbulent
lump. Since strong secondary flow is produced from the
heated entrance regime, especially in the case of large
Rayleigh number flow, the axial velocity exhibits a
convex-shaped distribution, with maximum velocity
near the bottom wall. Such a velocity profile may result
in almost the same time-series of turbulent lumps, which
is independent of Ugy j,, but further investigation in the
heated entrance regime are certainly needed.

3.3.2. Time-averaged characteristics and time-series in the
initial transition regime

Fig. 6 displays the time-averaged characteristics and
time-series in the initial transition regime. Fig. 6(a) ex-
hibits the nondimensional time-averaged temperature
distribution ®; and the fluctuation intensity of the fluid
temperature Tg; at Re = 1020, 2170 and 2230. The circles
in the figure indicate the results for Re = 1020 in the
laminar regime, while the solid dots indicate the results
for Re = 2170 and solid triangles those for Re = 2230 in
the initial stage of the transition. In Fig. 6(b) are the
time-series of the fluid temperature at various radial
positions for Re = 2170 and 2230.

For values of Re ranging from Reg.,s ~ 1900 to
Re = 2170, small fluctuations appear only in the lower
part of the tube /R = 0.1 to 0.8. The maximum value
of the fluctuation intensity of the fluid temperature Ty is
about 0.4% at Re = 2170 and r/R = 0.6 to 0.7, but the
fractional form of the time-averaged fluid temperature
Oy, indicated by the solid dots is almost identical to that
for laminar flow, indicated by the circles, at Re = 1020
shown in Fig. 6(a).

For Re = 2230, there appear two maximum values in
the fluctuation intensity of the fluid temperature T,
near r/R = —0.4 (T =~ 0.8%) and 0.7 (Tg ~ 1.6%). Itis
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Fig. 6. Nondimensional time-averaged temperature distribution, the fluctuation intensity and time-series of the fluid temperature. (a)
Nondimensional time-averaged temperature distribution and the fluctuation intensity of the fluid temperature. (b) Time-series of the

fluid temperature at Re = 2170 and Re = 2230.

found from the time-series shown in Fig. 6(b) that a
region of higher temperature with large fluctuations
appears intermittently at »/R = 0.70, and almost simul-
taneously a region of lower temperature appears at
around »/R=0.0to —0.35. In order to reveal the
temporal and spatial transition behavior, eight time-se-
ries of the fluid temperature were compiled using eight
thermocouples in the tube positioned along a vertical
line intersecting the tube’s axis. The detailed results of
this study are explained in Section 3.3.4.

3.3.3. Transition characteristics at Re ~ 1900

The flow remains steady and laminar for Re < 1900.
Fig. 7(a) displays the time-series of the fluid temperature
at Re ~ 1900 and r/R = 0.70, along with its phase space
and Poincaré section (indicated by the dotted line in the
phase space).

Small fluctuations in 7; of frequency slightly less
than 1 Hz appear at approximately Re = 1900, near
the maximum velocity point (that is /R =~ 0.7). These
fluctuations are due to the instability of the downward
portion of the secondary flow in the lower part of the
tube. Fig. 7(b) schematically depicts the instability
phenomenon, whose visualization was facilitated by
use of incense smoke. The comparatively large fluc-
tuations correspond to right- and left-swaying motion
of the downward portion of the secondary flow, in-
dicated by the thick arrow in the figure. The locally
spread distribution of trajectory points in the Poincaré
section indicates that this unstable flow has a three-
dimensional nature. Neither the transition Reynolds
number, Reqas ~ 1900, nor the transition behavior
depends on the fluctuation intensity at the tube inlet,
UFI in-

Re~1900

Ty K
T(t+At)

Time _, —u - T(t)

(a) Time serics Phase space  Poincaré section

Re~1900

Re=1020

(b) Schematic flow patterns.

Fig. 7. Time-series of the fluid temperature along with its phase
space and Poicaré section at Re =~ 1900 and »/R =0.70. (a)
Time-series phase space Poincaré section. (b) Schematic flow
patterns.

3.3.4. Transition characteristics at Re = 2230

In order to understand the mechanisms linked to
the occurrence of a particular fluctuation at
Re =2230, 1 attempted to elucidate the transition
behavior by analyzing the time-series and profiles.
Fig. 8 displays the transitional characteristics at Re =
2230.

Fig. 8(a) gives the time dependence of the fluid
temperature at various radial locations in the tube,
r/R =—-0.86,—0.37, 0.12 and 0.61. Fig. 8(b) exhibits
the instantaneous nondimensional fluid temperature
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Fig. 8. Transition characteristics at Re = 2230. (a) Time-series of the fluid temperature at various radial locations. (b) Instantaneous
temperature profiles at different times. (c) Instantaneous flow visualization photos.

profiles @¢, determined using the outputs of the eight
thermocouples. The times indicated here as (D, @ and
® correspond to those marked in the same way in
Fig. 8(a).

A turbulent lump whose velocity is relatively small
and whose fluid temperature 7; is high first appears at
r/R = 0.6 (T; increases, therefore ©; decreases) at a time
between () and (@ in Fig. 8(a). This low-velocity lump
accelerates the fluid in the upper part (7; decreases,
therefore Oy increases) at times (@) and @) around
r/R = —0.4, and as a result, the downward portion of
the secondary flow in the center part of the tube can
become destabilized. This causes the appearance of
strong temperature fluctuations near »/R = —0.4. The
instantaneous flow visualization photo displayed in Fig.
8 (c-ii) clearly indicates the acceleration of the fluid near
r/R = —0.4, while the one displayed in Fig. 8 (c-i) seems
to correspond to a laminar @; profile, indicated by the
circles in Fig. 8(b).

Fig. 9(a) exhibits time-series of the fluid temperature
at various radial locations, and Fig. 9(b) displays a
schematic of the corresponding phase space at
Re = 2230. The trajectory near the maximum velocity
point, »/R =0.61, appears as a tangled thread. Con-
trastingly, the trajectories near the upper part of the tube
cross-section, /R = —0.86 to — 0.37, exhibit consider-
ably specified linear orbits. Furthermore, the rise and
fall of the fluid temperature around »/R =0.61 and
—0.37 correspond to the appearance of a low velocity
turbulent lump (7; increases) around r/R = 0.7 and the
acceleration of the upper part of the fluid (7; decreases)
around r/R = —0.4.

3.4. Evidence of chaotic flow
3.4.1. Lyapunov exponents

It is very difficult to judge whether the unstable flow
resulting from the instability of the downward portion
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Fig. 9. Time-series of the fluid temperature and its phase space at Re = 2230 and various radial locations. (a) Time-series of the fluid

temperature at various radial locations. (b) Phase space.

of the secondary flow observed at Re = 1900 (shown in
Fig. 7) and the small fluctuations that appear near the
maximum velocity region at Re = 2170 (shown in Fig.
6(b)) is chaotic or not. Because the fluctuation intensity
is extremely small (77 <0.4%), the level of the signal
becomes almost the same as that of the noise.

Fig. 10 displays the time-series (Fig. 10(a)), its power
spectra (Fig. 10(b)), and the Lyapunov exponents /; for
the embedding dimensions d,, = 6 and 7 (Fig. 10(c)) at
Re = 2230. The lower parts of Fig. 10 display the results
for the case of the intermittent appearance of turbulent
lumps around »/R = 0.61, and the upper parts of Fig. 10
display the results for the case of the destabilization of
the secondary flow induced by the acceleration of the
axial velocity around r/R = —0.37. The uncertainties
listed for the values of 4; were determined by several
runs, using a variety of 74., between 3At and 6At and of
N (the number of the phase points within a shell) be-
tween 10 and 30.

At r/R = 0.61, fluctuation frequencies are below a
value of about 10 Hz, and the intensity 7y is about
1.6%. More than three positive Lyapunov exponents
appear, and therefore this flow is apparently strongly
chaotic. However, the Lyapunov dimension D; could
not be obtained using this algorithm. At r/R = —0.37,
fluctuation frequencies are below a value of about 10
Hz, and T is about 0.8%. Again, more than three
positive Lyapunov exponents appear, and the magni-
tude of the largest positive exponent is about twice that
for the unsteady flow at »/R = 0.61. This large maxi-
mum value of 4; indicates that the unstable behavior of
the trajectory here is stronger for the case of the chaotic
flow at /R = 0.61.

3.4.2. Correlation dimension
Fig. 11 shows the relation between the correlation
dimension D, and the embedding dimension d, for

Re = 2230 at /R = 0.61 and —0.37. As I see, the value
of D, varies smoothly and converges to a constant
value as the embedding dimension is increased. This
asymptotic value of D, independent of d,,, indicates its
own dimension of the attractor. The correlation di-
mensions of the transitional flow at »/R = 0.61, indi-
cated by the triangles, and r/R = —0.37, indicated by
the solid squares, in the figure are found to be
D. =4.0.

Abid et al. [9,10] reported that when Re goes through
Reyans, strong fluctuations appear in the temperature of
the tube wall. They found wall temperature behavior
that is almost identical to the one found in the present
work, as shown in Fig. 9(a). They used Poiseuille flow
for the inlet flow by installing an unheated tube length
of 1 m (104D), serving as a hydrodynamic approach, at
the beginning of the heated section of a horizontal tube
with water flow. They also determined the time evolu-
tion of the fractal dimension for various Reynolds
numbers as a function of the distance along the axial
coordinate. In a typical case, they found that the fractal
dimension begins with a value greater than 12 near the
tube inlet and decreases along the axial coordinate to
about 3 in region of the fully developed flow for
Re = 2600. That is, significantly greater number of de-
grees of freedom appear at the entrance, and this
number decreases as the axial coordinate x increases.
They conjectured that this corresponds to the selection
and amplification mode by the convection rolls, and
that it is as if these temperature fluctuations result from
a turbulent instability at the entrance that tends to
evolve toward a chaotic state.

In my experiment, I found by direct measurement
of the flow field that the transitional time-series, in-
cluding turbulent lumps, for Re = 2230 indicates com-
paratively low-dimensional chaotic flow with D. = 4.0.
It seems that the correlation dimension D, = 4.0 is very
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Fig. 10. Time-series of the fluid temperature, its power spectra, and the Lyapunov exponents. (a) Time-series of the fluid temperature.

(b) Power spectra. (c) Lyapunov exponents.

close to an integer but not exactly an integer, because
its power spectrum has many peak frequencies which
are broadening, and more than three positive Lyapu-
nov exponents appear as shown in Fig. 10. D, = 4.0 is
close to Abid’s result for Re = 2600. In order to de-
termine the transition Reynolds number Rey.,, and
show that the characteristics are almost independent of
the velocity fluctuation intensity at the tube inlet.
Further investigations from the standpoint of chaos

theory that take into consideration the instability due
to the heating in the entrance region are certainly
needed.

4. Conclusion

I experimentally studied the influence of the buoy-
ancy force and inlet flow conditions on the laminar—
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turbulent transition process of fully developed air flow

in a heated horizontal tube with uniform wall heat flux.

Experiments were carried out at modified Rayleigh

number Ra, = 3.1 x 10%, and the conclusions obtained

are as follows.

1. For laminar flow, velocity and temperature distribu-
tions were obtained, and I found the discrepancies
especially in the temperature distributions between
these results and those of both the experiment of
Mori et al. [14] and the numerical simulation of Ish-
igaki and Mochizuki [16]. The present results are
closer to the latter, which were obtained from simula-
tions using the equations describing only the flow
field. However, in order to obtain a more complete
understanding of the mixed convection behavior
through a numerical study, it is necessary to also in-
clude within the model a description of the thermal
behavior of the system.

2. Small fluctuations in the temperature below a fre-
quency of about 1 Hz appear near Re = 1900, but
only near the maximum velocity point, »/R ~ 0.7.
The appearance of these fluctuations is due to the in-
stability of the downward portion of the secondary
flow, and it is independent of the velocity fluctuation
intensity at the tube inlet. That is, when Ra, is large,
the secondary flow caused by buoyancy undergoes a
transition at Reynolds number Rey,s, and the value
of Reya,s depends little on the fluctuation intensity
at the tube inlet.

3. Above Re = 2230, turbulent lumps with large fluctu-
ations, whose velocities are relatively small and
whose temperatures are high, are first produced at
the maximum velocity point /R = 0.7. Such a small
velocity lump accelerates the fluid in the upper part of
the tube around r/R = —0.4, and as a result, the
downward portion of the secondary flow can become
destabilized. Instantaneous flow visualization photos
clearly indicate the acceleration of the fluid near the
upper part of the tube.

4. The transitional flow at Re = 2230 was found to be
considerably low-dimensional chaotic nature. This
was determined by calculating a set of Lyapunov ex-
ponents and the correlation dimension from the time-
series of the fluid temperature.
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